Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques.
نویسندگان
چکیده
The cytochrome P450 (P450) superfamily plays an important role in the metabolism of drug compounds, and it is therefore highly desirable to have models that can predict whether a compound interacts with a specific isoform of the P450s. In this work, we provide in silico models for classification of CYP1A2 inhibitors and noninhibitors. Training and test sets consisted of approximately 400 and 7000 compounds, respectively. Various machine learning techniques, such as binary quantitative structure activity relationship, support vector machine (SVM), random forest, kappa nearest neighbor (kNN), and decision tree methods were used to develop in silico models, based on Volsurf and Molecular Operating Environment descriptors. The best models were obtained using the SVM, random forest, and kNN methods in combination with the BestFirst variable selection method, resulting in models with 73 to 76% of accuracy on the test set prediction (Matthews correlation coefficients of 0.51 and 0.52). Finally, a decision tree model based on Lipinski's Rule-of-Five descriptors was also developed. This model predicts 67% of the compounds correctly and gives a simple and interesting insight into the issue of classification. All of the models developed in this work are fast and precise enough to be applicable for virtual screening of CYP1A2 inhibitors or noninhibitors or can be used as simple filters in the drug discovery process.
منابع مشابه
Prediction of Cytochrome P450 3A4, 2D6, and 2C9 Inhibitors and Substrates by Using Support Vector Machines
Statistical learning methods have been used in developing filters for predicting inhibitors of two P450 isoenzymes, CYP3A4 and CYP2D6. This work explores the use of different statistical learning methods for predicting inhibitors of these enzymes and an additional P450 enzyme, CYP2C9, and the substrates of the three P450 isoenzymes. Two consensus support vector machine (CSVM) methods, "positive...
متن کاملDevelopment of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors.
Computational models of cytochrome P450 3A4 inhibition were developed based on high-throughput screening data for 4470 proprietary compounds. Multiple models differentiating inhibitors (IC(50) <3 microM) and noninhibitors were generated using various machine-learning algorithms (recursive partitioning [RP], Bayesian classifier, logistic regression, k-nearest-neighbor, and support vector machine...
متن کاملClassification of CYP450 1A2 inhibitors using PubChem data
Cytochromes P450 (CYP450) are a superfamily of enzymes, involved in metabolism of a large number of xenobiotic compounds. CYP450 are involved in degradation of a large amount of drugs, currently present on the market. The promiscuity with respect to substrates makes the CYP450 enzymes prone to inhibition by a large amount of drugs, which gives way to clinically significant drug-drug interaction...
متن کاملClassification of Highly Unbalanced CYP450 Data of Drugs Using Cost Sensitive Machine Learning Techniques
In this paper, we study the classifications of unbalanced data sets of drugs. As an example we chose a data set of 2D6 inhibitors of cytochrome P450. The human cytochrome P450 2D6 isoform plays a key role in the metabolism of many drugs in the preclinical drug discovery process. We have collected a data set from annotated public data and calculated physicochemical properties with chemoinformati...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2009